
Escryptow: Design and Implementation of an E-commerce Dapp

Abstract

The online marketplace and escrow system show great potential to be incorporated with and

benefit tremendously from emerging blockchain technology. Our project focuses on creating a

decentralized, blockchain-based online marketplace that provides similar online transaction and shopping

experiences for users while guaranteeing high degrees of user anonymity and autonomy. Building upon

the smart contract for the peer-to-peer transactions we created in Quarter 1, we established a

ready-to-launch website as the frontend client to deliver to users and added more comprehensive

functionalities to the contract, together creating a marketing system that enables automated transactions

between multiple users. The system will have advantages such as high user anonymity, reliable

transaction without third-party interventions, accessible transaction histories, and a usable interface that

accommodates different actions. We divided our task into parallel groups to design and collectively

develop the website. The frontends’ focus was the webpage design, which should transform our contract

into an actual usable product. We created UI and visual elements to facilitate navigation experiences and

build the connection between the website, the underlying smart contract, and all external resources

necessary for blockchain transactions. The backends’ primary goal was to create the advanced

functionalities of the transaction system and multiple utility functionalities for the website. We developed

the smart contracts through Remix IDE and deployed the contracts on the Goerli Ethereum testnet to

eventually run as a holistic system.

Introduction

Blockchain technologies have undergone rapid expansion in years with the potential to be

incorporated into many current applications and frameworks of the IT industry. Conventional software

and website services are facing challenges as Blockchain-based systems provide an unparalleled degree of

information reliability and integrity, and allow services to be made available without a trusted third-party

provider. One of these industries in which blockchain technology has shown immense potential to reform

is the online marketplace and escrow system. Currently, online marketplace services, such as Amazon and

eBay, are predominantly offered by third-party corporations that gain profits from high service fees and

are vulnerable to user data breaches.

A decentralized, Ethereum-based escrow system on the other hand requires negligible operational

fees (i.e. gas fees) instead of a substantial portion of the seller’s profits. Trusted third-party firms such as

eBay were critical prior to blockchain technology since they address the issue of trust between unknown

buyers and sellers as a mediator in a digital marketplace. However, with the open-sourced smart contracts

of blockchains, new escrow systems can effectively displace third-party administrators and proceed with

transactions based on transparent, mutually agreed protocols.

To explore alternative escrow system approaches, we aim to establish a decentralized,

Ethereum-based escrow marketplace by creating a smart contract that adapts online transactions with

Blockchain technology and building a full-stack escrow system. Eventually, the escrow system is

expected to prompt the users to connect to Ethereum, interact with the smart contract, and accomplish

automated, peer-to-peer transactions with other users (e.g. buyers and sellers). We design our smart

contracts to allow buyers and sellers to interact through actions such as posting products to sell, buying

products, canceling transactions, and sending confirmations at each step. Our smart contract will securely

hold funds until the item is received by the buyer and all conditions of the smart contract are met. All

steps will be automated to eliminate external mediators. Thereafter, we will design the front end to build

connections between the smart contract, the cryptocurrency wallets (e.g. MetaMask), and the

user-learnable, actionable interface.

Specifically, we divided our task into two parallel portions, the front-end escrow client building,

and the back-end smart contract development. The front end will focus on creating UI and visual elements

to facilitate navigation experiences. We host our escrow system through an online website, where users

will be prompted to connect to their MetaMask wallets and interact with the smart contract to join,

confirm, and cancel transactions. The content of the backend is based on the smart contract from the

previous quarter, in which the team worked to create the additional functionalities of the website to

replicate the user actions available on conventional online marketplace websites nowadays and make our

prototype competitive. The team also devoted time to testing edge cases and compatibility between the

contract and the front-end website.

Methods

General Overview

Our objective is to establish an e-commerce platform that is powered by blockchain technology,

specifically Ethereum, to enable completely decentralized buying and selling of products between sellers

and buyers. To ensure that the sale of a product is successful, we require both parties to have the incentive

to complete the purchase. As a decentralized platform, we lack a mediator to establish trust between

unknown buyers and sellers in a digital marketplace. Therefore, to guarantee the effectiveness of a

product purchase, both the seller and the buyer will have to deposit the value of the product price as

escrow in the smart contract. This deposit will not be accessible to either party until the transaction is

completed or one of the parties cancels the operation.

Consequently, when a seller sells a product, they will need to deposit the price of the product for

sale, regardless of the quantity sold. On the other hand, the buyer will have to deposit twice the price of

the product value, where one-half will be used as escrow, and the other half will be transferred to the

seller as a payment method at the end of the operation. After the transaction is complete, the seller will

receive twice the price of the product (their escrow and the buyer’s payment), while the buyer will receive

their escrow back and the product.

Furthermore, our development includes additional functionalities to provide both sellers and

buyers with more freedom when making purchases, similar to those found on platforms like eBay. These

functionalities include the ability for sellers and buyers to cancel transactions, either by rejecting the

buyer or canceling the purchase, as well as the ability for sellers to retrieve a product from the platform.

Additionally, we have added the capability for buyers to add reviews once the transaction has been

completed.

To develop a decentralized platform, the logic of the code is the governing entity that establishes

the rules for the platform. For this reason, certain functions can only be applied under specific conditions.

Furthermore, the timeline for a purchase follows a strict structure to prevent fraudulent transactions. This

structure is illustrated in the following flowchart (see Figure 1), which shows the logic behind our

platform and the conditions under which certain operations can be carried out.

Figure 1: Flowchart of Escryptow

Backend

The objective of the backend of our project is to provide advanced functionalities for the

transaction system and multiple utility features for the website. This was achieved by developing a smart

contract using Solidity and the Remix IDE, which was later deployed on the Goerli Ethereum testnet

using ThirdWeb. It is designed to enable buyers and sellers to interact through different actions such as

posting products for

Initially, we started developing a contract that created a sub-contract for every transaction

between seller and buyer, however, this was deemed ineffective due to high gas fees for each transaction.

To solve this issue, we adapted the contract to allow multiple sellers and buyers to transact under the same

single contract. We achieved this by utilizing mapping, arrays, and structs to keep track of all current and

past transactions and states in our smart contract.

The smart contract includes several functions that can be divided into two categories: 'public'

functions and 'public view' functions. Although both functions can be called both inside and outside the

smart contract, the first type allows modifying the state of the contract, while the second type only allows

reading the state of the contract. We use the first type of functions to ensure the proper functioning of our

e-commerce platform, such as createProduct (seller), buyProduct (buyer), approvePurchase (seller),

rejectPurchase (seller), approveReceipt (buyer), cancelBuy (buyer), stopProduct (seller), addRating

(buyer). These functions are visible in the flowchart in Figure 1.

To ensure that both buyers and sellers can see the products for sale on our platform and confirm

each step of the purchase process, we need view functions that allow access to the information of the

contract, without any cost to the user (zero gas fees). These functions are: getAllProducts, getStatus,

observeBuyers, getDeliveryAddress, and their names indicate the function they perform.

Finally, we have integrated the correct functioning of IFPS into our smart contract to be able to

visualize the images of each product uploaded by the seller. We have made certain modifications to our

contract to be able to store the content-addressed hash and ensure that all images are stored in a

decentralized manner.

Frontend

The frontend of our project focuses on creating a webpage to display to users and allow users to

connect to and interact with the underlying smart contract and escrow system through simple,

discoverable interfaces. The website serves as a central hub that facilitates communication between the

users and provides an easy way for users to connect to the various tools and applications (e.g. MetaMask,

Etherscan, etc) essential for blockchain operations. To provide a fluent, comfortable navigation

experience for the users, the frontend website design is mainly concerned with two demands: the stable,

efficient connection to the contract and external tools, and the discoverability and aesthetic of the visual

elements.

We started the design process of the wireframe by creating a wireframe using Figma, in which we

build the general layout of the various pages and preserved dummy buttons to add functionalities in the

future. We used wireframes mainly to test out the placement of the website logo, buttons, and the visual

representation of text and products. The wireframe provided a framework for the actual website

development.

The frontend web page is built upon Javascript with relevant libraries and tools (e.g. React and

Vite). We also added elements with Tailwind CSS to achieve better visuality and interactivity of the

website. Furthermore, we also utilized certain blockchain specific applications to enhance usability and

data retrieval efficiency, such as Thirdweb SDK and IPFS. The frontend code is hosted on Hostinger, and

we have used a paid dedicated gateway to accelerate the necessary IPFS functionalities. Version control

for the frontend code is managed on GitHub.

The frontend website requires users to sign in to their MetaMask as login, for which buttons are

provided as the utility navigation to guide the users to their browser extensions and sign in to the

cryptocurrency wallet. The main navigation of the website after signing in comprises connection status to

the wallet, a display of currently available products (like typical online shopping websites), and actionable

buttons for current transactions.

Results

Our platform, named Escryptow, is available through the following link: www.escryptow.net

In this section, we provide a step-by-step explanation of how users can utilize our platform to buy or sell

products. The guide is divided into two sections, Seller and Buyer, which explain the respective processes

for selling and buying.

Requirements

1. Create an account using MetaMask. For more information on this process, the following website

can be helpful: https://www.coindesk.com/learn/how-to-set-up-a-metamask-wallet/

2. Obtain GoerliEth. As Goerli ETH is not a real cryptocurrency, we can obtain 0.2 Goerli ETH per

day using the following website: https://goerlifaucet.com

Seller

1. Connect the MetaMask wallet to the platform.

2. Navigate to the "Sell Products" page.

3. Fill in all required fields for the product, including "Your Product," "Price," "Amount,"

"Description," and "Image." The "Deposit" field will be automatically filled based on the price.

4. Confirm the transaction, including the deposit as escrow and gas fees, using MetaMask. When the

seller clicks on "Create a new product," MetaMask will automatically pop up. After the

transaction is processed, the product will be visible to all users on the platform.

5. Navigate to the seller's profile.

6. Retrieve the products or wait for a buyer to purchase them.

7. When a buyer is interested in purchasing the product, it will appear under "Current Waiting

Buyers." The seller can then confirm or reject the buyer. If the seller confirms the buyer, they

should proceed to send the physical product to the buyer's specified delivery address.

http://www.escryptow.net
https://www.coindesk.com/learn/how-to-set-up-a-metamask-wallet/

8. To confirm or reject a buyer, the seller must include the specific buyer's address by copying and

pasting it.

9. Regardless of whether the seller confirms or rejects the buyer, they must confirm the transaction

on MetaMask.

10. If the seller confirms the buyer, they will receive payment once the buyer accepts the receipt. The

seller will be able to retrieve their deposit once the product's amount reaches zero or if they

decide to retrieve the product.

Buyer

1. Connect the MetaMask wallet to the platform.

2. Navigate to the “Buy Products” page.

3. Decide which product to buy and click on it.

4. Fill the blank with your current address and click on “Buy Product”. The buyer should take

note of the price of the product since they will need to deposit double the amount. After the

purchase, the buyer will receive half of the deposit back, and the other half will be sent to the

seller.

5. Confirm the transaction using MetaMask.

6. Navigate to the “Track Transactions” page.

7. Refuse to purchase or wait for the seller to accept the buyer and send the product.

8. When the buyer receives the product, they can click on "Approve Your Receipt". Once the

seller accepts the buyer, the purchase cannot be rejected.

9. Confirm the transaction using MetaMask.

10. After the purchase is finalized, the buyer will have the possibility to review the product.

Discussion

With the development of this platform, we have observed how to develop a dApp from start to

finish. Likewise, we have seen how blockchain technology offers considerable benefits that position

Escryptow as a possible alternative to more common platforms such as Ebay. However, with this project,

we have also observed that an e-commerce dApp also has certain disadvantages compared to centralized

platforms.

The main benefits of our platform, Escryptow, are the elimination of intermediaries and third

parties for the buying and selling of products. Thanks to the logic of our smart contract and the interface

created around it, both buyers and sellers can buy and sell products without any companies or banks in

between. It is a particularly attractive alternative if certain institutions require high transaction fees for the

sale of products. With Escryptow, the user only has to worry about gas fees.In addition, our platform also

offers more security when processing payments. Finally, the fact that all transactions are accessible and

recorded in the blockchain offers more transparency and accountability for the parties involved. As we

can see, Escryptow offers numerous benefits compared to centralized platforms.

However, it is also important to mention certain disadvantages that would need to be addressed

for Escryptow (or a similar platform) to compete against Ebay. Firstly, the scalability of the platform

could be a problem if the number of users were to grow significantly. If this were the case, the smart

contract may struggle with large volumes of data that would hinder the platform's operation. However,

thanks to the fact that we have decided to use IFPS, this problem is also of lesser importance. Similarly,

another problem to investigate and solve is the fact of paying gas fees during each operation necessary

during the purchase (even during the cancellation of products). Users who cancel or are rejected will have

paid gas fees without being able to successfully complete the purchase. However, it is important to note

that gas fees are minimal and lower than transaction fees on centralized platforms. Finally, the last

problem with Escryptow is data privacy. We must keep in mind that our platform is used to sell physical

products, so the security and protection of delivery addresses must be guaranteed. Although it is true that

Escryptow does not protect this information, there are different existing ways to make it possible and

maintain end-to-end encryption of sensitive information.

Escrytow is a promising platform and project for the emergence of decentralized commerce

platforms that can handle a large number of users. However, it is important to note that certain tasks still

need to be addressed for it to become a reality. The process of creating a dApp from scratch has been a

rewarding one, and we hope it will open the door to future innovations in the field of decentralized

applications.

Appendix

ThirdWeb framework to host current contract Store | Goerli | thirdweb

References

Goerli Faucet. https://goerlifaucet.com/.

Leech, Ollie. “How to Set up a Metamask Wallet.” CoinDesk Latest Headlines RSS, CoinDesk,

11 Jan. 2022, https://www.coindesk.com/learn/how-to-set-up-a-metamask-wallet/.

https://thirdweb.com/goerli/0x9222918Ac5eAF19ab0a81C344e349df2C1782E78

